
Learning near-optimal hyperparameters with
minimal overhead

Gellért Weisz András György Csaba Szepesvári

Workshop on Automated Algorithm Design

(TTIC 2019)

August 7, 2019

1 / 22

Introduction

Problem: find good parameter settings (configurations) for
general purpose solvers.

I No structure assumed over the parameter space.

Zillions of practical algorithms⇔ Little theory
Want theoretical guarantees on the runtime of

I the chosen configuration; and
I the configuration process.

Goal: find a near-optimal configuration solving 1− δ fraction of the
problems in the least expected time.

I Since some instances (δ fraction) are hopelessly hard; don’t want to
solve those.

2 / 22

Introduction

Problem: find good parameter settings (configurations) for
general purpose solvers.

I No structure assumed over the parameter space.

Zillions of practical algorithms⇔ Little theory
Want theoretical guarantees on the runtime of

I the chosen configuration; and
I the configuration process.

Goal: find a near-optimal configuration solving 1− δ fraction of the
problems in the least expected time.

I Since some instances (δ fraction) are hopelessly hard; don’t want to
solve those.

2 / 22

Introduction

Problem: find good parameter settings (configurations) for
general purpose solvers.

I No structure assumed over the parameter space.

Zillions of practical algorithms⇔ Little theory
Want theoretical guarantees on the runtime of

I the chosen configuration; and
I the configuration process.

Goal: find a near-optimal configuration solving 1− δ fraction of the
problems in the least expected time.

I Since some instances (δ fraction) are hopelessly hard; don’t want to
solve those.

2 / 22

Problem formulation
Given: n configurations, distribution Γ of problem instances.

pd
f

Runtime of configuration �

tail probability = �

pd
f

Runtime of configuration �

expected capped
runtime (�)�

�

�

Runtime of the optimal
capped configuration:

OPTδ = min
i
Rδ(i)

Configuration i is (ε, δ)-optimal if Rδ(i) ≤ (1 + ε)OPTδ/2.

Note that OPTδ ≤ OPTδ/2 ≤ OPT0 – gaps can be large!

3 / 22

Problem formulation
Given: n configurations, distribution Γ of problem instances.

pd
f

Runtime of configuration �

tail probability = �

pd
f

Runtime of configuration �

expected capped
runtime (�)�

�

�

Runtime of the optimal
capped configuration:

OPTδ = min
i
Rδ(i)

Configuration i is (ε, δ)-optimal if Rδ(i) ≤ (1 + ε)OPTδ/2.

Note that OPTδ ≤ OPTδ/2 ≤ OPT0 – gaps can be large!

3 / 22

Problem formulation
Given: n configurations, distribution Γ of problem instances.

pd
f

Runtime of configuration �

tail probability = �

pd
f

Runtime of configuration �

expected capped
runtime (�)�

�

�

Runtime of the optimal
capped configuration:

OPTδ = min
i
Rδ(i)

Configuration i is (ε, δ)-optimal if Rδ(i) ≤ (1 + ε)OPTδ/2.

Note that OPTδ ≤ OPTδ/2 ≤ OPT0 – gaps can be large!

3 / 22

Problem formulation
Given: n configurations, distribution Γ of problem instances.

pd
f

Runtime of configuration �

tail probability = �

pd
f

Runtime of configuration �

expected capped
runtime (�)�

�

�

Runtime of the optimal
capped configuration:

OPTδ = min
i
Rδ(i)

Configuration i is (ε, δ)-optimal if Rδ(i) ≤ (1 + ε)OPTδ/2.

Note that OPTδ ≤ OPTδ/2 ≤ OPT0 – gaps can be large!

3 / 22

Problem formulation
Given: n configurations, distribution Γ of problem instances.

pd
f

Runtime of configuration �

tail probability = �

pd
f

Runtime of configuration �

expected capped
runtime (�)�

�

�

Runtime of the optimal
capped configuration:

OPTδ = min
i
Rδ(i)

Configuration i is (ε, δ)-optimal if Rδ(i) ≤ (1 + ε)OPTδ/2.

Note that OPTδ ≤ OPTδ/2 ≤ OPT0 – gaps can be large!

3 / 22

Problem formulation
Given: n configurations, distribution Γ of problem instances.

pd
f

Runtime of configuration �

tail probability = �

pd
f

Runtime of configuration �

expected capped
runtime (�)�

�

�

Runtime of the optimal
capped configuration:

OPTδ = min
i
Rδ(i)

Configuration i is (ε, δ)-optimal if Rδ(i) ≤ (1 + ε)OPTδ/2.

Note that OPTδ ≤ OPTδ/2 ≤ OPT0 – gaps can be large!

3 / 22

Previous work (before ICML’19)

4 / 22

Structured Procrastination
(Kleinberg et al., 2017)

Relaxed goal: Find i with Rδ(i) ≤ (1 + ε)OPT0

Worst-case lower bound: runtime must be at least Ω
(
OPT0

n
ε2δ

)
With probability 1− ζ , returns an (ε, δ)-optimal configuration in
worst-case time

O
(

OPT0
n

ε2δ
log
(n log κ̄

ζε2δ

))
I κ: absolute upper bound on runtimes

Can we remove κ̄?

Can we improve runtime when problem is easier?

5 / 22

Structured Procrastination
(Kleinberg et al., 2017)

Relaxed goal: Find i with Rδ(i) ≤ (1 + ε)OPT0

Worst-case lower bound: runtime must be at least Ω
(
OPT0

n
ε2δ

)
With probability 1− ζ , returns an (ε, δ)-optimal configuration in
worst-case time

O
(

OPT0
n

ε2δ
log
(n log κ̄

ζε2δ

))
I κ: absolute upper bound on runtimes

Can we remove κ̄?

Can we improve runtime when problem is easier?

5 / 22

LEAPSANDBOUNDS
(Weisz et al., 2018)

1 Guess a value θ of OPT, starting from a low value

2 Test whether Rδ(i) ≤ θ for some configuration i:
I For each i, run b = Õ(1

δε2) instances with instance-wise timeout
τ = 4θ

3δ , abort if empirical average exceeds θ.

3 Return the configuration with the smallest mean amongst
successful configurations. If no test succeeded, double θ,
continue from Step 2.

Average runtime budget and its use across different configurations and phases
6 / 22

Why does this work?

w.h.p., for any configuration i:

I if runs complete within θ average runtime:

(i) τ is above δ-quantile for configuration i
(ii) Empirical mean R̄i is ε-close to

Rτ (i) = E[X(i, J) ∧ τ], J ∼ Γ

I otherwise, Rδ(i) > θ, hence can safely abandon i for this phase

Thus, if for any configuration i, R̄i < θ, then for i∗ = argmini R̄i,
Rδ(i∗) ≤ (1 + ε)OPT0 w.h.p.

7 / 22

Why does this work?

w.h.p., for any configuration i:
I if runs complete within θ average runtime:

(i) τ is above δ-quantile for configuration i
(ii) Empirical mean R̄i is ε-close to

Rτ (i) = E[X(i, J) ∧ τ], J ∼ Γ
I otherwise, Rδ(i) > θ, hence can safely abandon i for this phase

Thus, if for any configuration i, R̄i < θ, then for i∗ = argmini R̄i,
Rδ(i∗) ≤ (1 + ε)OPT0 w.h.p.

7 / 22

Why does this work?

w.h.p., for any configuration i:
I if runs complete within θ average runtime:

(i) τ is above δ-quantile for configuration i

(ii) Empirical mean R̄i is ε-close to
Rτ (i) = E[X(i, J) ∧ τ], J ∼ Γ

I otherwise, Rδ(i) > θ, hence can safely abandon i for this phase

Thus, if for any configuration i, R̄i < θ, then for i∗ = argmini R̄i,
Rδ(i∗) ≤ (1 + ε)OPT0 w.h.p.

7 / 22

Why does this work?

w.h.p., for any configuration i:
I if runs complete within θ average runtime:

(i) τ is above δ-quantile for configuration i
(ii) Empirical mean R̄i is ε-close to

Rτ (i) = E[X(i, J) ∧ τ], J ∼ Γ

I otherwise, Rδ(i) > θ, hence can safely abandon i for this phase

Thus, if for any configuration i, R̄i < θ, then for i∗ = argmini R̄i,
Rδ(i∗) ≤ (1 + ε)OPT0 w.h.p.

7 / 22

Why does this work?

w.h.p., for any configuration i:
I if runs complete within θ average runtime:

(i) τ is above δ-quantile for configuration i
(ii) Empirical mean R̄i is ε-close to

Rτ (i) = E[X(i, J) ∧ τ], J ∼ Γ

I otherwise, Rδ(i) > θ, hence can safely abandon i for this phase

Thus, if for any configuration i, R̄i < θ, then for i∗ = argmini R̄i,
Rδ(i∗) ≤ (1 + ε)OPT0 w.h.p.

7 / 22

Why does this work?

w.h.p., for any configuration i:
I if runs complete within θ average runtime:

(i) τ is above δ-quantile for configuration i
(ii) Empirical mean R̄i is ε-close to

Rτ (i) = E[X(i, J) ∧ τ], J ∼ Γ

I otherwise, Rδ(i) > θ, hence can safely abandon i for this phase

Thus, if for any configuration i, R̄i < θ, then for i∗ = argmini R̄i,
Rδ(i∗) ≤ (1 + ε)OPT0 w.h.p.

7 / 22

Guarantees
Theorem
With high probability,

(i) the algorithm finds an (ε, δ)-optimal configuration;
(ii) the worst case runtime is O

(
OPT0

n
ε2δ

log
(
n logOPT0

ζ

))
.

Improvement: Empirical Bernstein stopping
Stop testing a configuration i when confidence intervals already
indicate that (a) i is not optimal with the given timeout; or (b) i is
already estimated with ε accuracy.
Runtime:

O

[
OPT0

∑n
i=1 max

(
σ2
i,k

ε2R2
τk

(i)
, 1
εδ ,

1
δ log 1

δ

)(
log n logOPT0

ζ + log 1
εRτk (i)

)]
.

Huge improvement if the variances are small: σ
2
i,k

R2
τk

� 1
δ .

8 / 22

Guarantees
Theorem
With high probability,

(i) the algorithm finds an (ε, δ)-optimal configuration;
(ii) the worst case runtime is O

(
OPT0

n
ε2δ

log
(
n logOPT0

ζ

))
.

Improvement: Empirical Bernstein stopping
Stop testing a configuration i when confidence intervals already
indicate that (a) i is not optimal with the given timeout; or (b) i is
already estimated with ε accuracy.

Runtime:

O

[
OPT0

∑n
i=1 max

(
σ2
i,k

ε2R2
τk

(i)
, 1
εδ ,

1
δ log 1

δ

)(
log n logOPT0

ζ + log 1
εRτk (i)

)]
.

Huge improvement if the variances are small: σ
2
i,k

R2
τk

� 1
δ .

8 / 22

Guarantees
Theorem
With high probability,

(i) the algorithm finds an (ε, δ)-optimal configuration;
(ii) the worst case runtime is O

(
OPT0

n
ε2δ

log
(
n logOPT0

ζ

))
.

Improvement: Empirical Bernstein stopping
Stop testing a configuration i when confidence intervals already
indicate that (a) i is not optimal with the given timeout; or (b) i is
already estimated with ε accuracy.
Runtime:

O

[
OPT0

∑n
i=1 max

(
σ2
i,k

ε2R2
τk

(i)
, 1
εδ ,

1
δ log 1

δ

)(
log n logOPT0

ζ + log 1
εRτk (i)

)]
.

Huge improvement if the variances are small: σ
2
i,k

R2
τk

� 1
δ .

8 / 22

Guarantees
Theorem
With high probability,

(i) the algorithm finds an (ε, δ)-optimal configuration;
(ii) the worst case runtime is O

(
OPT0

n
ε2δ

log
(
n logOPT0

ζ

))
.

Improvement: Empirical Bernstein stopping
Stop testing a configuration i when confidence intervals already
indicate that (a) i is not optimal with the given timeout; or (b) i is
already estimated with ε accuracy.
Runtime:

O

[
OPT0

∑n
i=1 max

(
σ2
i,k

ε2R2
τk

(i)
, 1
εδ ,

1
δ log 1

δ

)(
log n logOPT0

ζ + log 1
εRτk (i)

)]
.

Huge improvement if the variances are small: σ
2
i,k

R2
τk

� 1
δ .

8 / 22

Experiments
Configuring the minisat SAT solver (Sorensson and Een, 2005)
1K configurations, 20K nontrivial problem instances
Compare with Structured Procrastination by Kleinberg et al. (2017)
Code and (83 CPU years worth of @ year 2018 CPUs) data:
https://github.com/deepmind/leaps-and-bounds

0 200 400 600 800 1000

Configurations (sorted according to mean below delta quantile)

100

101

102

103

M
e
a
n
 b

e
lo

w
 d

e
lt

a
 q

u
a
n
ti

le
 (

s)

delta=0

delta=0.05

delta=0.1

delta=0.2

delta=0.3

delta=0.5

9 / 22

Experiments
Configuring the minisat SAT solver (Sorensson and Een, 2005)
1K configurations, 20K nontrivial problem instances
Compare with Structured Procrastination by Kleinberg et al. (2017)
Code and (83 CPU years worth of @ year 2018 CPUs) data:
https://github.com/deepmind/leaps-and-bounds

0 200 400 600 800 1000

Configurations (sorted according to mean below delta quantile)

100

101

102

103

M
e
a
n
 b

e
lo

w
 d

e
lt

a
 q

u
a
n
ti

le
 (

s)

delta=0

delta=0.05

delta=0.1

delta=0.2

delta=0.3

delta=0.5

9 / 22

Results
ε = 0.2, δ = 0.2, ζ = 0.1

Instead of doubling, use θ := 1.25θ

Runs can be stopped and resumed (ie ‘continue’ running on an
instance)

0 200 400 600 800 1000

Configurations (sorted according to mean below 0.2 quantile)

104

105

T
o
ta

l
ti

m
e
 s

p
e
n
t

ru
n
n
in

g
 c

o
n
fi
g
u
ra

ti
o
n
 (

s)

LeapsAndBounds

Structured Procrastination

3–20-times improvement in total work
(also across different choices of ε and δ)

10 / 22

Results
ε = 0.2, δ = 0.2, ζ = 0.1

Instead of doubling, use θ := 1.25θ

Runs can be stopped and resumed (ie ‘continue’ running on an
instance)

0 200 400 600 800 1000

Configurations (sorted according to mean below 0.2 quantile)

104

105

T
o
ta

l
ti

m
e
 s

p
e
n
t

ru
n
n
in

g
 c

o
n
fi
g
u
ra

ti
o
n
 (

s)

LeapsAndBounds

Structured Procrastination

3–20-times improvement in total work
(also across different choices of ε and δ)

10 / 22

Results
ε = 0.2, δ = 0.2, ζ = 0.1

Instead of doubling, use θ := 1.25θ

Runs can be stopped and resumed (ie ‘continue’ running on an
instance)

0 200 400 600 800 1000

Configurations (sorted according to mean below 0.2 quantile)

104

105

T
o
ta

l
ti

m
e
 s

p
e
n
t

ru
n
n
in

g
 c

o
n
fi
g
u
ra

ti
o
n
 (

s)

LeapsAndBounds

Structured Procrastination

3–20-times improvement in total work
(also across different choices of ε and δ)

10 / 22

Effect of the multiplier of θ

1.0 1.2 1.4 1.6 1.8 2.0 2.2

Theta multiplier

0

500

1000

1500

2000

2500

3000

T
o
ta

l
ru

n
ti

m
e
 (

d
a
y
)

LeapsAndBounds, no resume

LeapsAndBounds, resume

SP, no resume

SP, resume

(cost of pause/resume is not modeled)

11 / 22

Current work (ICML’19)

12 / 22

CAPSANDRUNS algorithm (Weisz et al., 2019)
For all configurations i, in parallel:
Phase I: Find tδ(i) ≤ τi ≤ tδ/2(i):

Run Θ(1/δ) instances in parallel until 1− 3
4δ fraction of them

finishes.

Abort if taking too much time.

Phase II: Find Rτi(i) with ε relative accuracy:
Run sufficiently many instances with timeout τi until we get an
ε-accurate estimate of Rτi(i) (‘Bernstein stopping’ ala Mnih et al.
2008).

Adjust best runtime UCB and abort if LCB(i)>UCB.

Return: Of the configurations not rejected, select the one with the
smallest average capped runtime

1 2 3 4 1 2 3

1 2 3 4

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1

c1

c2

c3

c4

3

7

3

7

13 / 22

CAPSANDRUNS algorithm (Weisz et al., 2019)
For all configurations i, in parallel:
Phase I: Find tδ(i) ≤ τi ≤ tδ/2(i):

Run Θ(1/δ) instances in parallel until 1− 3
4δ fraction of them

finishes. Abort if taking too much time.

Phase II: Find Rτi(i) with ε relative accuracy:
Run sufficiently many instances with timeout τi until we get an
ε-accurate estimate of Rτi(i) (‘Bernstein stopping’ ala Mnih et al.
2008). Adjust best runtime UCB and abort if LCB(i)>UCB.

Return: Of the configurations not rejected, select the one with the
smallest average capped runtime

1 2 3 4 1 2 3

1 2 3 4

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1

c1

c2

c3

c4

3

7

3

7

13 / 22

Global variables
1: Set N of n algorithm configurations
2: Precision parameter ε ∈ (0, 13)
3: Quantile parameter δ ∈ (0, 1)
4: Failure probability parameter ζ ∈ (0, 16)
5: Instance distribution Γ
6: b←

⌈
481

δ log
(
3n
ζ

)⌉
7: T ←∞ . Time limit, updated continuously by

all parallel processes

Algorithm 1 CAPSANDRUNS

1: N ′ ← N . Pool of competing configurations
2: for configuration i ∈ N , in parallel do
3: // Phase I:
4: Run τi ←QUANTILEEST (i)
5: // Phase II:
6: if QUANTILEEST (i) aborted then
7: Remove i from N ′
8: else
9: Run RUNTIMEEST (i, τi), abort if |N ′| = 1

10: if RUNTIMEEST (i, τi) rejected i then
11: Remove i from N ′
12: else
13: Ȳ (i) ← return value of RUNTIMEEST

(i, τi)
14: end if
15: end if
16: end for
17: return i∗ = argmini∈N ′ Ȳ (i) and τi∗

Algorithm 2 QUANTILEEST

1: Inputs: i
2: Initialize: m←

⌈
(1− 3

4δ)b
⌉

3: Run configuration i on b instances, in parallel,
until m of these complete. Abort if total work
≥ 2Tb.

4: τ ← runtime ofmth completed instance
5: return τ

Algorithm 3 RUNTIMEEST

1: Inputs: i, τ
2: Initialize: j ← 0
3: while True do
4: Sample jth instance J from Γ
5: Let Y be τ capped runtime of i on J
6: Update Ȳ , σ̄2, sample mean and variance
7: C = c(σ̄, n, j, ζ, τ)
8: if Ȳ − C > T then
9: return reject i

10: end if
11: T ← min{T, Ȳ + C} . lowest upper

confidence
12: if C ≤ ε

3(2Ȳ − C) then
13: return accept iwith runtime estimate Ȳ
14: end if
15: j ← j + 1
16: end while

14 / 22

Global variables
1: Set N of n algorithm configurations
2: Precision parameter ε ∈ (0, 13)
3: Quantile parameter δ ∈ (0, 1)
4: Failure probability parameter ζ ∈ (0, 16)
5: Instance distribution Γ
6: b←

⌈
481

δ log
(
3n
ζ

)⌉
7: T ←∞ . Time limit, updated continuously by

all parallel processes

Algorithm 1 CAPSANDRUNS

1: N ′ ← N . Pool of competing configurations
2: for configuration i ∈ N , in parallel do
3: // Phase I:
4: Run τi ←QUANTILEEST (i)
5: // Phase II:
6: if QUANTILEEST (i) aborted then
7: Remove i from N ′
8: else
9: Run RUNTIMEEST (i, τi), abort if |N ′| = 1

10: if RUNTIMEEST (i, τi) rejected i then
11: Remove i from N ′
12: else
13: Ȳ (i) ← return value of RUNTIMEEST

(i, τi)
14: end if
15: end if
16: end for
17: return i∗ = argmini∈N ′ Ȳ (i) and τi∗

Algorithm 2 QUANTILEEST

1: Inputs: i
2: Initialize: m←

⌈
(1− 3

4δ)b
⌉

3: Run configuration i on b instances, in parallel,
until m of these complete. Abort if total work
≥ 2Tb.

4: τ ← runtime ofmth completed instance
5: return τ

Algorithm 3 RUNTIMEEST

1: Inputs: i, τ
2: Initialize: j ← 0
3: while True do
4: Sample jth instance J from Γ
5: Let Y be τ capped runtime of i on J
6: Update Ȳ , σ̄2, sample mean and variance
7: C = c(σ̄, n, j, ζ, τ)
8: if Ȳ − C > T then
9: return reject i

10: end if
11: T ← min{T, Ȳ + C} . lowest upper

confidence
12: if C ≤ ε

3(2Ȳ − C) then
13: return accept iwith runtime estimate Ȳ
14: end if
15: j ← j + 1
16: end while

14 / 22

Global variables
1: Set N of n algorithm configurations
2: Precision parameter ε ∈ (0, 13)
3: Quantile parameter δ ∈ (0, 1)
4: Failure probability parameter ζ ∈ (0, 16)
5: Instance distribution Γ
6: b←

⌈
481

δ log
(
3n
ζ

)⌉
7: T ←∞ . Time limit, updated continuously by

all parallel processes

Algorithm 1 CAPSANDRUNS

1: N ′ ← N . Pool of competing configurations
2: for configuration i ∈ N , in parallel do
3: // Phase I:
4: Run τi ←QUANTILEEST (i)
5: // Phase II:
6: if QUANTILEEST (i) aborted then
7: Remove i from N ′
8: else
9: Run RUNTIMEEST (i, τi), abort if |N ′| = 1

10: if RUNTIMEEST (i, τi) rejected i then
11: Remove i from N ′
12: else
13: Ȳ (i) ← return value of RUNTIMEEST

(i, τi)
14: end if
15: end if
16: end for
17: return i∗ = argmini∈N ′ Ȳ (i) and τi∗

Algorithm 2 QUANTILEEST

1: Inputs: i
2: Initialize: m←

⌈
(1− 3

4δ)b
⌉

3: Run configuration i on b instances, in parallel,
until m of these complete. Abort if total work
≥ 2Tb.

4: τ ← runtime ofmth completed instance
5: return τ

Algorithm 3 RUNTIMEEST

1: Inputs: i, τ
2: Initialize: j ← 0
3: while True do
4: Sample jth instance J from Γ
5: Let Y be τ capped runtime of i on J
6: Update Ȳ , σ̄2, sample mean and variance
7: C = c(σ̄, n, j, ζ, τ)
8: if Ȳ − C > T then
9: return reject i

10: end if
11: T ← min{T, Ȳ + C} . lowest upper

confidence
12: if C ≤ ε

3(2Ȳ − C) then
13: return accept iwith runtime estimate Ȳ
14: end if
15: j ← j + 1
16: end while

14 / 22

Global variables
1: Set N of n algorithm configurations
2: Precision parameter ε ∈ (0, 13)
3: Quantile parameter δ ∈ (0, 1)
4: Failure probability parameter ζ ∈ (0, 16)
5: Instance distribution Γ
6: b←

⌈
481

δ log
(
3n
ζ

)⌉
7: T ←∞ . Time limit, updated continuously by

all parallel processes

Algorithm 1 CAPSANDRUNS

1: N ′ ← N . Pool of competing configurations
2: for configuration i ∈ N , in parallel do
3: // Phase I:
4: Run τi ←QUANTILEEST (i)
5: // Phase II:
6: if QUANTILEEST (i) aborted then
7: Remove i from N ′
8: else
9: Run RUNTIMEEST (i, τi), abort if |N ′| = 1

10: if RUNTIMEEST (i, τi) rejected i then
11: Remove i from N ′
12: else
13: Ȳ (i) ← return value of RUNTIMEEST

(i, τi)
14: end if
15: end if
16: end for
17: return i∗ = argmini∈N ′ Ȳ (i) and τi∗

Algorithm 2 QUANTILEEST

1: Inputs: i
2: Initialize: m←

⌈
(1− 3

4δ)b
⌉

3: Run configuration i on b instances, in parallel,
until m of these complete. Abort if total work
≥ 2Tb.

4: τ ← runtime ofmth completed instance
5: return τ

Algorithm 3 RUNTIMEEST

1: Inputs: i, τ
2: Initialize: j ← 0
3: while True do
4: Sample jth instance J from Γ
5: Let Y be τ capped runtime of i on J
6: Update Ȳ , σ̄2, sample mean and variance
7: C = c(σ̄, n, j, ζ, τ)
8: if Ȳ − C > T then
9: return reject i

10: end if
11: T ← min{T, Ȳ + C} . lowest upper

confidence
12: if C ≤ ε

3(2Ȳ − C) then
13: return accept iwith runtime estimate Ȳ
14: end if
15: j ← j + 1
16: end while

14 / 22

CAPSANDRUNS theory

Theorem
With probability 1− ζ ,

(i) the algorithm finds an (ε, δ)-optimal configuration;
(ii) the total work is

Õζ

(
nOPTδ/2

(
1

δ
+max

{
σ2

max{ε2,∆2}
,

r

max{ε,∆}

}))
,

15 / 22

Refined result
Gap: ∆i = 1− OPTδ/2

Rδ(i)
.

Variance of R(i, j, τ), j ∼ Γ: σ2τ (i).
Maximum relative variance: σ̂2(i) = supτ∈[tδ(i),tδ/2(i)]

σ2
τ (i)

R2
τ (i)

.
Relative range r(i) = supτ∈[tδ(i),tδ/2(i)]

τ
Rτ (i)

.
Among the set of configurations N1 not rejected by QUANTILEEST,
let i∗ = argmini∈N1

Rτi(i).

Theorem
With probability 1− ζ ,

(i) the algorithm finds an (ε, δ)-optimal configuration;
(ii) the total work is

Õζ

(
OPT δ

2

[
n

δ
+
∑
i∈N

max

{
max

{
σ̂2(i), σ̂2(i∗)

}
max{ε2,∆2

i }
,
max {r(i), r(i∗)}

max{ε,∆i}

}])

16 / 22

Refined result
Gap: ∆i = 1− OPTδ/2

Rδ(i)
.

Variance of R(i, j, τ), j ∼ Γ: σ2τ (i).
Maximum relative variance: σ̂2(i) = supτ∈[tδ(i),tδ/2(i)]

σ2
τ (i)

R2
τ (i)

.
Relative range r(i) = supτ∈[tδ(i),tδ/2(i)]

τ
Rτ (i)

.
Among the set of configurations N1 not rejected by QUANTILEEST,
let i∗ = argmini∈N1

Rτi(i).

Theorem
With probability 1− ζ ,

(i) the algorithm finds an (ε, δ)-optimal configuration;
(ii) the total work is

Õζ

(
OPT δ

2

[
n

δ
+
∑
i∈N

max

{
max

{
σ̂2(i), σ̂2(i∗)

}
max{ε2,∆2

i }
,
max {r(i), r(i∗)}

max{ε,∆i}

}])

16 / 22

Experiments I

0 200 400 600 800 1000

Configurations (sorted according to mean below R ±=2 quantile)

104

105

106

107

T
o
ta

l
ti

m
e
 s

p
e
n
t

ru
n
n
in

g
 c

o
n
fi
g
u
ra

ti
o
n
 (

s)

CapsAndRuns

LeapsAndBounds

Structured Procrastination

STRUCTURED PROCRASTINATION LEAPSANDBOUNDS CAPSANDRUNS
20643 (±5) days 1451 (±83) days 586 (±7) days

17 / 22

Experiments II: Speedup compared to
LEAPSANDBOUNDS

0.02 0.04 0.06 0.08 0.10

"

0.02

0.04

0.06

0.08

0.10
±

0.75
3.00

7.00

14.00

21.00

28.00

35.00

42.00

49.00

56.00

63.00
65.01

18 / 22

Recent work (after ICML’19)

19 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:

I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:

I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:

I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get

I Note: optimal configuration can switch back and forth when δ is
decreased!

Questions:

I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:

I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:

I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:
I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:
I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)

I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:
I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)

I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:
I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?

I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:
I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?

I Does it make sense to decrease ζ?
I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:
I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?

I Continuous setting?

20 / 22

Structured proscrastination with confidence
(Kleinberg et al., 2019)

Anytime guarantee: With some c, p > 0 universal, for any (ε, δ), for
t ≥ cOPT0 n/(δε

2), SPC returns with probability 1− ct−p a config i
such that Rδ(i) ≤ (1 + ε)OPT0

Making CAPSANDRUNS (more) anytime: Fix ε; add outer loop that
decreases δ

I Works because OPT1/2 ≤ OPT1/4 ≤ OPT1/8 ≤ · · · ≤ OPT0

I Guarantee against OPT0 is easier to get
I Note: optimal configuration can switch back and forth when δ is

decreased!

Questions:
I Improving guarantee from 1/(δε2) to problem-dependent 1/δ + 1/ε2

I Simultaneous guarantee against OPTδ/2 for any (ε, δ)
I Algorithm takes ζ vs. it returns ζ (‘fixed budget’?)
I What guarantees can we get?
I Does the new LCB used by SPC help?
I Does it make sense to decrease ζ?
I Continuous setting? 20 / 22

Thank you!

21 / 22

References I

R. Kleinberg, K. Leyton-Brown, and B. Lucier. Efficiency through procrastination: Approximately
optimal algorithm configuration with runtime guarantees. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2017.

R. Kleinberg, K. Leyton-Brown, B. Lucier, and D. Graham. Procrastinating with confidence:
Near-optimal, anytime, adaptive algorithm configuration. arXiv preprint arXiv:1902.05454,
2019.

V. Mnih, C. Szepesvári, and J.-Y. Audibert. Empirical Bernstein stopping. In Proceedings of the
25th international conference on Machine learning, pages 672–679. ACM, 2008.

N. Sorensson and N. Een. Minisat v1. 13-a sat solver with conflict-clause minimization. SAT, 2005
(53):1–2, 2005.

G. Weisz, A. György, and C. Szepesvári. Leapsandbounds: A method for approximately optimal
algorithm configuration. In Proceedings of the International Conference on Machine Learning
(ICML), 2018.

G. Weisz, A. György, and C. Szepesvári. CapsAndRuns: An improved method for approximately
optimal algorithm configuration. In Proceedings of the International Conference on Machine
Learning, pages 6707–6715, 2019.

22 / 22

